Part Number Hot Search : 
MAX55 2417K4A BA483153 11N08 EGP30A P6KE20C DTA123 P50N06
Product Description
Full Text Search
 

To Download APT64GA90LD30 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  052-6347 rev e 6 - 2011 absolute maximum ratings symbol parameter ratings unit v ces collector emitter voltage 900 v i c1 continuous collector current @ t c = 25c 117 a i c2 continuous collector current @ t c = 100c 64 i cm pulsed collector current 1 193 v ge gate-emitter voltage 2 30 v p d total power dissipation @ t c = 25c 500 w ssoa switching safe operating area @ t j = 150c 193a @ 900v t j , t stg operating and storage junction temperature range -55 to 150 c t l lead temperature for soldering: 0.063" from case for 10 seconds 300 combi (igbt and diode) typical applications zvs phase shifted and other full bridge half bridge high power pfc boost welding ups, solar, and other inverters high frequency, high ef? ciency industrial features fast switching with low emi very low e off for maximum ef? ciency ultra low c res for improved noise immunity low conduction loss low gate charge increased intrinsic gate resistance for low emi rohs compliant APT64GA90LD30 apt64ga90b2d30 900v power mos 8 ? is a high speed punch-through switch-mode igbt. low e off is achieved through leading technology silicon design and lifetime control processes. a reduced e off - v ce(on) tradeoff results in superior ef ? ciency compared to other igbt technologies. low gate charge and a greatly reduced ratio of c res /c ies provide excellent noise immunity, short delay times and simple gate drive. the intrinsic chip gate resistance and capacitance of the poly-silicone gate structure help control di/dt during switching, resulting in low emi, even when switching at high frequency. microsemi website - http://www.microsemi.com high speed pt igbt static characteristics t j = 25c unless otherwise speci? ed symbol parameter test conditions min typ max unit v br(ces) collector-emitter breakdown voltage v ge = 0v, i c = 250 a 900 v v ce(on) collector-emitter on voltage v ge = 1 5 v, i c = 38a t j = 25c 2.5 3.1 t j = 125c 2.2 v ge(th) gate emitter threshold voltage v ge =v ce , i c = 1ma 3 4.5 6 i ces zero gate voltage collector current v ce = 900v, v ge = 0v t j = 25c 350 a t j = 125c 1500 i ges gate-emitter leakage current v gs = 30v 100 na APT64GA90LD30 to-247 apt64ga90b2d30 downloaded from: http:///
052-6347 rev e 6 - 2011 thermal and mechanical characteristics dynamic characteristics t j = 25c unless otherwise speci? ed apt64ga90l_b2d30 symbol characteristic min typ max unit r jc junction to case thermal resistance (igbt) - - .25 c/w r jc junction to case thermal resistance (diode) 0.8 w t package weight - 6.1 - g torque mounting torque (to-264 package), 4-40 or m3 screw 10 inlbf symbol parameter test conditions min typ max unit c ies input capacitance capacitance v ge = 0v, v ce = 25v f = 1mhz 3525 pf c oes output capacitance 318 c res reverse transfer capacitance 53 q g 3 total gate charge gate charge v ge = 15v v ce = 450v i c = 38a 162 nc q ge gate-emitter charge 26 q gc gate- collector charge 64 ssoa switching safe operating area t j = 150c, r g = 4.7 4 , v ge = 15v, l= 100uh, v ce = 900v 193 a t d(on) turn-on delay time inductive switching (25c) v cc = 600v v ge = 15v i c = 38a r g = 4.7 4 t j = +25c 18 ns t r current rise time 26 t d(off) turn-off delay time 131 t f current fall time 104 e on2 turn-on switching energy 1192 j e off 6 turn-off switching energy 1088 t d(on) turn-on delay time inductive switching (125c) v cc = 600v v ge = 15v i c = 38a r g = 4.7 4 t j = +125c 17 ns t r current rise time 27 t d(off) turn-off delay time 181 t f current fall time 171 e on2 turn-on switching energy 1857 j e off 6 turn-off switching energy 2311 1 repetitive rating: pulse width and case temperature limited by maximum junction temperature. 2 pulse test: pulse width < 380 s , duty cycle < 2%. 3 see mil-std-750 method 3471.4 r g is external gate resistance, not including internal gate resistance or gate driver impedance. (mic4452) 5 e on2 is the clamped inductive turn on energy that includes a commutating diode reverse recovery current in the igbt turn on energy loss. a combi device is used for the clamping diode.6 e off is the clamped inductive turn-off energy measured in accordance with jedec standard jesd24-1. microsemi reserves the right to change, without notice, the speci? cations and information contained herein. downloaded from: http:///
052-6347 rev e 6 - 2011 typical performance curves apt64ga90l_b2d30 0 20 40 60 80 100 120 140 160 25 50 75 100 125 150 0 1 2 3 4 5 0 25 50 75 100 125 150 0 2 4 6 8 10 12 14 16 0 20 40 60 80 100 120 140 160 180 0 1 2 3 4 6 8 10 12 14 16 0 20 40 60 80 100 120 140 160 0 2 4 6 8 10 12 0 50 100 150 200 250 300 0 4 8 12 16 20 24 28 32 0 20 40 60 80 100 0 1 2 3 4 250 s pulse test<0.5 % duty cycle t j = 25c. 250 s pulse test <0.5 % duty cycle v ge = 15v. 250 s pulse test <0.5 % duty cycle i c = 13a i c = 38a i c = 76a i c = 38a i c = 76a 13v 6v 15v i c = 38a t j = 25c v ce = 720v v ce = 450v v ce = 180v t j = 25c t j = -55c v ge = 15v t j = 55c t j = 150c v ce , collector-to-emitter voltage (v) figure 1, output characteristics (t j = 25c) i c , collector current (a) t j = 25c t j = 125c v ce , collector-to-emitter voltage (v) figure 2, output characteristics (t j = 25c) i c , collector current (a) t j = 125c v ge , gate-to-emitter voltage (v) figure 3, transfer characteristics i c , collector current (a) v ge , gate-to-emitter voltage (v) figure 5, on state voltage vs gate-to-emitter voltage v ce , collector-to-emitter voltage (v) gate charge (nc) figure 4, gate charge v ge , gate-to-emitter voltage (v) t j , junction temperature (c) figure 6, on state voltage vs junction temperature v ce , collector-to-emitter voltage (v) t c , case temperature (c) figure 8, dc collector current vs case temperature i c , dc collector current (a) -50 -25 0 25 50 75 100 125 150 1.15 1.10 1.05 1.00 0.95 0.90 0.85 0.80 0.75 0.70 t j , junction temperature figure 7, threshold voltage vs junction temperature v gs(th) , threshold voltage (normalized) 7v 8v 9v i c = 19a 10v 11v downloaded from: http:///
052-6347 rev e 6 - 2011 0 1000 2000 3000 4000 5000 6000 0 25 50 75 100 125 0 1000 2000 3000 4000 5000 6000 7000 8000 0 10 20 30 40 50 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 0 10 20 30 40 50 60 70 80 0 1000 2000 3000 4000 5000 6000 0 10 20 30 40 50 60 70 80 0 50 100 150 200 250 0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80 0 40 80 120 160 200 0 10 20 30 40 50 60 70 80 10 12 14 16 18 20 22 24 0 10 20 30 40 50 60 70 80 v ge =15v,t j =125c v ge =15v,t j =25c v ce = 600v r g = 4.7 l = 100 h v ce = 600v v ge = +15v r g =4.7 v ce = 600v t j = 25c , or 125c r g = 4.7 l = 100 h v ce = 600v v ge = +15v r g = 4.7 v ce = 600v v ge = +15v r g = 4.7 r g = 4.7 , l = 100 h, v ce = 600v t j = 125c t j = 25c t j = 125c t j = 25c r g = 4.7 , l = 100 h, v ce = 600v t j = 25 or 125c,v ge = 15v t j = 125c, v ge = 15v t j = 25c, v ge = 15v e on2, 76a e on2, 38a e off, 38a e on2, 19a e off, 19a v ce = 600v v ge = +15v t j = 125c e on2, 76a e on2, 38a e off, 76a e off, 38a e on2, 19a e off, 19a i ce , collector-to-emitter current (a) figure 9, turn-on delay time vs collector current t d(on) , turn-on delay time (ns) i ce , collector-to-emitter current (a) figure 10, turn-off delay time vs collector current t d(off) , turn-off delay time (ns) i ce , collector-to-emitter current (a) figure 11, current rise time vs collector current t r , rise time (ns) i ce , collector-to-emitter current (a) figure 12, current fall time vs collector current t r , fall time (ns) i ce , collector-to-emitter current (a) figure 13, turn-on energy loss vs collector current e on2 , turn on energy loss ( j) i ce , collector-to-emitter current (a) figure 14, turn-off energy loss vs collector current e off , turn off energy loss ( j) r g , gate resistance (ohms) figure 15, switching energy losses vs gate resistance switching energy losses ( j) t j , junction temperature (c) figure 16, switching energy losses vs junction temperature switching energy losses ( j) e off, 76a typical performance curves apt64ga90l_b2d30 downloaded from: http:///
052-6347 rev e 6 - 2011 typical performance curves apt64ga90l_b2d30 0 0.05 0.10 0.15 0.10 0.25 0.30 10 -5 10 -4 10 -3 10 -2 0.1 1 10 0 100 200 300 400 500 600 700 10 100 1,000 10,000 z jc , thermal impedance (c/w) 0.3 d = 0.9 0.7 single pulse rectangular pulse duration (seconds) figure 19, maximum effective transient thermal impedance, junction-to-case vs pulse duration 0.5 0.1 0.05 c oes c res c ies peak t j = p dm x z jc +t c duty factor d = t 1 / t 2 t 2 t 1 p dm note: v ce , collector-to-emitter voltage (volts) figure 17, capacitance vs collector-to-emitter voltage c, capacitance (pf) 0.1 1 10 100 1000 1 10 100 1000 v ce , collector-to-emitter voltage figure 18, minimum switching safe operating area i c , collector current (a) downloaded from: http:///
052-6347 rev e 6 - 2011 figure 21, turn-on switching waveforms and de? nitions figure 22, turn-off switching waveforms and de? nitions i c a d.u.t. v ce v cc apt30dq100 figure 20, inductive switching test circuit apt64ga90l_b2d30 t j = 125c collector current collector voltage gate voltage 5% 10% t d(on) 90% 10% t r 5% switching energy t j = 125c collector voltage collector current gate voltage switching energy 0 t d(off) 10% t f 90% downloaded from: http:///
052-6347 rev e 6 - 2011 static electrical characteristics dynamic characteristics maximum ratings all ratings: t c = 25c unless otherwise speci ? ed. ultrafast soft recovery rectifier diode symbol characteristic / test conditions apt64ga90l_b2d30 unit i f(av) maximum average forward current (t c = 102c, duty cycle = 0.5) 30 amps i f(rms) rms forward current (square wave, 50% duty) 43 i fsm non-repetitive forward surge current (t j = 45c, 8.3 ms) 150 symbol characteristic / test conditions min type max unit v f forward voltage i f = 30a 2.5 volts i f = 60a 3.06 i f = 30a, t j = 125c 1.92 symbol characteristic test conditions min typ max unit t rr reverse recovery time i f = 1a, di f /dt = -100a/ s , v r = 30v, t j = 25 c - 24 - ns t rr reverse recovery time i f = 30a, di f /dt = -200a/ s v r = 667v, t c = 25 c - 295 - q rr reverse recovery charge - 440 - nc i rrm maximum reverse recovery current - 4 - amps t rr reverse recovery time i f = 30a, di f /dt = -200a/ s v r = 667v, t c = 125 c - 330 -n s q rr reverse recovery charge - 1550 - nc i rrm maximum reverse recovery current - 8 - amps t rr reverse recovery time i f = 30a, di f /dt = -1000a/ s v r = 667v, t c = 125 c - 150 - ns q rr reverse recovery charge - 2250 -n c i rrm maximum reverse recovery current - 25 - amps z jc , thermal impedance (c/w) 10 -5 10 -4 10 -3 10 -2 10 -1 1.0 rectangular pulse duration (seconds) figure 23. maximum effective transient thermal impedance, junction-to-case vs. pulse duration 0.900.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0 0.5 single pulse 0.1 0.3 0.7 0.05 peak t j = p dm x z jc + t c duty factor d = t 1 / t 2 t 2 t 1 p dm note: d = 0.9 downloaded from: http:///
052-6347 rev e 6 - 2011 dynamic characteristics t j = 25c unless otherwise speci? ed apt64ga90l_b2d30 t j = 125 c v r = 800v 15a 30a 60a t rr q rr q rr t rr i rrm 500400 300 200 100 0 3530 25 20 15 10 50 duty cycle = 0.5 t j = 175 c 0 25 50 75 100 125 150 25 50 75 100 125 150 175 1 10 100 200 5045 40 35 30 25 20 15 10 50 1.21.0 0.8 0.6 0.4 0.2 0.0 160140 120 100 8060 40 20 0 c j , junction capacitance k f , dynamic parameters (pf) (normalized to 1000a/ s) i f(av) (a) t j , junction temperature ( c) case temperature ( c) figure 28. dynamic parameters vs. junction temperature figure 29. maximum average forward current vs. casetemperature v r , reverse voltage (v) figure 30. junction capacitance vs. reverse voltage 100 9080 70 60 50 40 30 20 10 0 40003500 3000 2500 2000 1500 1000 500 0 v f , anode-to-cathode voltage (v) -di f /dt, current rate of change(a/ s) figure 24. forward current vs. forward voltage figure 25. reverse recovery time vs. current rate of change -di f /dt, current rate of change (a/ s) -di f /dt, current rate of change (a/ s) figure 26. reverse recovery charge vs. current rate of change figure 27. reverse recovery current vs. current rate of change 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 q rr , reverse recovery charge i f , forward current (nc) (a) i rrm , reverse recovery current t rr , reverse recovery time (a) (ns) t j = 175 c t j = -55 c t j = 25 c t j = 125 c t j = 125 c v r = 800v 60a 15a 30a t j = 125 c v r = 800v 60a 30a 15a downloaded from: http:///
052-6347 rev e 6 - 2011 15.49 (.610)16.26 (.640) 5.38 (.212)6.20 (.244) 4.50 (.177) max. 19.81 (.780)20.32 (.800) 20.80 (.819)21.46 (.845) 1.65 (.065)2.13 (.084) 1.01 (.040)1.40 (.055) 5.45 (.215) bsc 2.87 (.113)3.12 (.123) 4.69 (.185)5.31 (.209) 1.49 (.059) 2.49 (.098) 2.21 (.087)2.59 (.102) 0.40 (.016)0.79 (.031) gate these dimensions are equal to the to-247 without the mounting hole. 2-plcs. 19.51 (.768)20.50 (.807) 19.81 (.780)21.39 (.842) 25.48 (1.003)26.49 (1.043) 2.29 (.090)2.69 (.106) 0.76 (.030)1.30 (.051) 3.10 (.122)3.48 (.137) 4.60 (.181)5.21 (.205) 1.80 (.071) 2.01 (.079) 2.59 (.102) 3.00 (.118) 0.48 (.019)0.84 (.033) collecto emitte gate dimensions in millimeters and (inches) 2.29 (.090)2.69 (.106) 5.79 (.228)6.20 (.244) 2.79 (.110)3.18 (.125) 5.45 (.215) bsc 2-plcs. dimensions in millimeters and (inches) collectoemitte collecto collecto dynamic characteristics t j = 25c unless otherwise speci? ed apt64ga90l_b2d30 4 3 1 2 5 zer o 0.25 i rr m apt10035lll pearson 2878 current transformer di f /dt adjus t 30h d.u.t. +18v 0v v r t rr / q rr waveform t-max tm (b2) package outline to-264 (l) package outline (cathode) (anode) (cathode) (anode) (cathode) figure 32. diode reverse recovery waveform de? nition figure 31. diode test circuit i f - forward conduction current di f /dt - rate of diode current change through zero crossing. i rrm - maximum reverse recovery current t rr - reverse recovery time measured from zero crossing where diode current goes from positive to negative, to the point at which the straight line through i rrm and 0.25, i rrm passes through zero. q rr - area under the curve de ? ned by i rrm and t rr. 5 1 2 3 4 1 . 0 1 6 ( . 0 4 0 ) 1.016 (.040) downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of APT64GA90LD30

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X